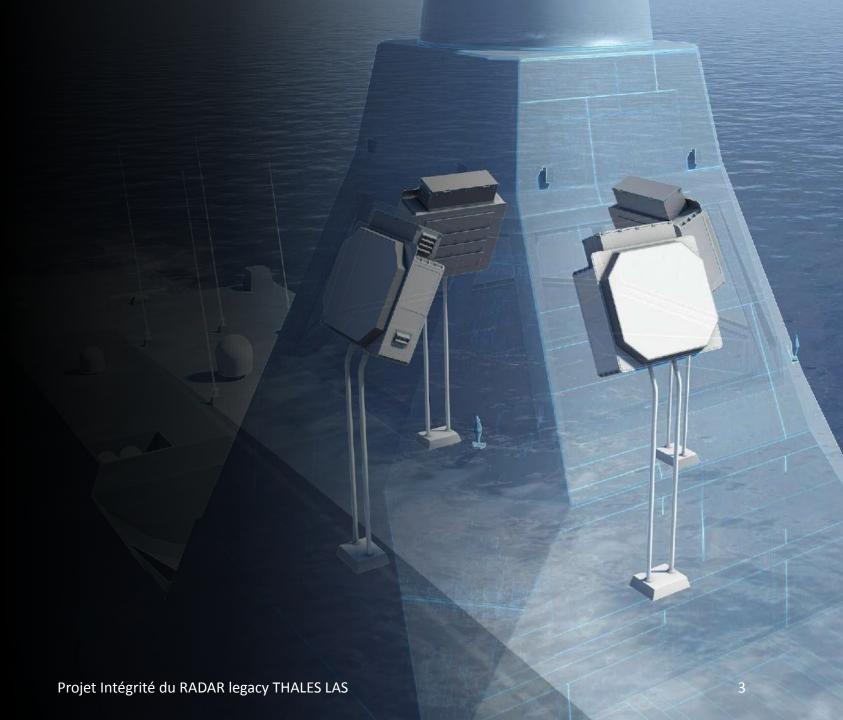
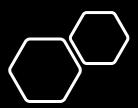
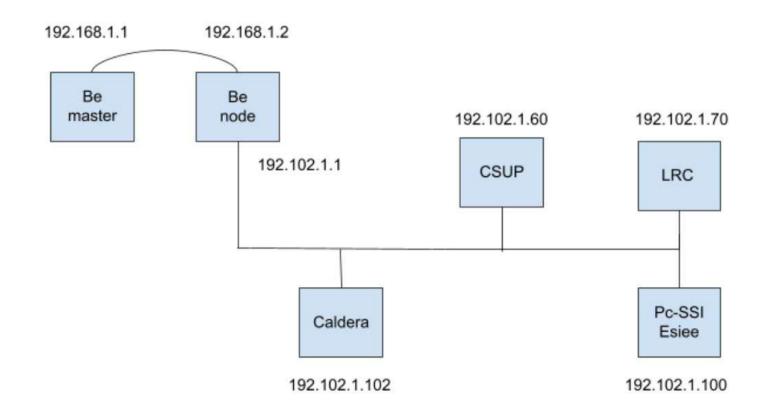

Projet E4 : Intégrité d'un RADAR Legacy

Sommaire

Configuration


• Cybersécurité détection & exploitation des failles


- Caldera
- Surveillance par l'IA
- Conclusion


Configuration des VMs

- Architecture réseau
- Configuration des VM sur virtualbox
- Complication sur la configuration de la LRC
- Complication sur la Caldera red-team

Architecture réseau

Complication sur la LRC

- IRQ
- I/O APIC
- Correction
- console=tty0 console=ttyS0,115200 divider=10 noapic
- pci=routeirg

root (hd0,0)
kernel /vmlinuz-2.6.18-194.el5PAE ro root=/dev/VolGroup00/LogVol00
initrd /initrd-2.6.18-194.el5PAE.img

```
ACPI: PCI Interrupt Link [LNKC] enabled at IRQ 9
ACPI: PCI Interrupt 0000:00:03.0[A] -> Link [LNKC] -> GSI 9 (level, low) -> IRQ
9
ACPI: PCI Interrupt Link [LNKD] enabled at IRQ 11
ACPI: PCI Interrupt 0000:00:04.0[A] -> Link [LNKD] -> GSI 11 (level, low) -> IRQ
11
ACPI: PCI Interrupt Link [LNKA] enabled at IRQ 11
ACPI: PCI Interrupt Link [LNKA] enabled at IRQ 11
ACPI: PCI Interrupt 0000:00:05.0[A] -> Link [LNKA] -> GSI 11 (level, low) -> IRQ
11
ACPI: PCI Interrupt 0000:00:07.0[A] -> Link [LNKC] -> GSI 9 (level, low) -> IRQ
9
```

```
Total of 1 processors activated (5606.40 BogoMIPS).

ENABLING IO-APIC IRQs
..TIMER: vector=0x31 apic1=0 pin1=2 apic2=-1 pin2=-1
..MP-BIOS bug: 8254 timer not connected to IO-APIC
...trying to set up timer (IRQ0) through the 8259A ... failed.
...trying to set up timer as Virtual Wire IRQ...failed.
...trying to set up timer as ExtINT IRQ... failed :(.

Kernel panic - not syncing: IO-APIC + timer doesn't work! Boot with apic=debug
and send a report. Then try booting with the 'noapic' option
```

Complication sur la VM Caldera

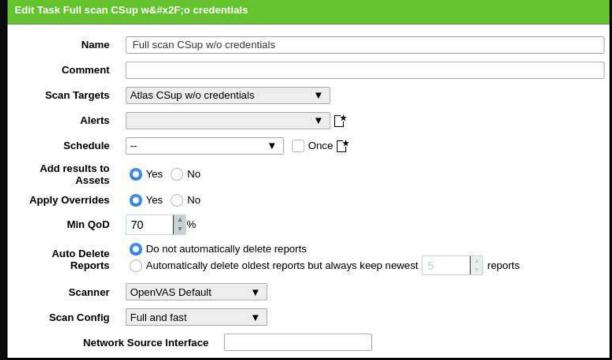
- Serveur.py
- Non détection des VM
- Des habilités non-détectées
- Kernel panic
- Problème de virtualisation

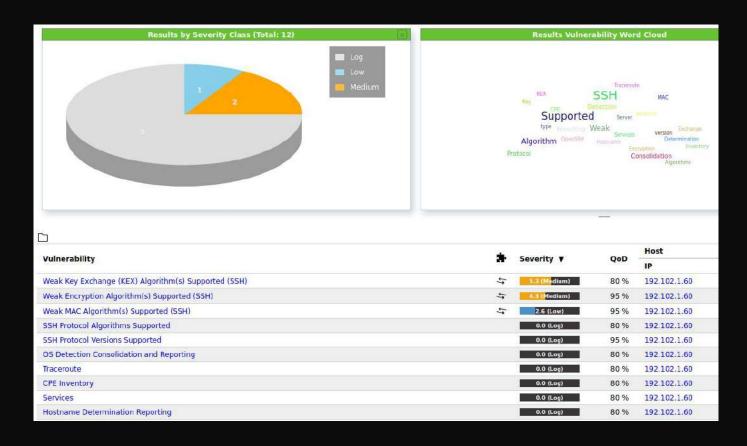
```
ide1: BM-DMA at 0xc008-0xc00f, BIOS settings: hdc:pio, hdd:pio
ne2k-pci.c:v1.03 9/22/2003 D. Becker/P. Gortmaker
 http://www.scyld.com/network/ne2k-pci.html
hda: QEMU HARDDISK, ATA DISK drive
ideO at 0x1f0-0x1f7,0x3f6 on irq 14
hdc: QEMU CD-ROM, ATAPI CD/DUD-ROM drive
ide1 at 0x170-0x177,0x376 on irg 15
ACPI: PCI Interrupt Link [LNKC] enabled at IRQ 10
ACPI: PCI Interrupt 0000:00:03.0[A] -> Link [LNKC] -> GSI 10 (level, low) -> IRQ
etho: RealTek RTL-8029 found at 0xc100, IRQ 10, 52:54:00:12:34:56.
hda: max request size: 512KiB
hda: 180224 sectors (92 MB) w/256KiB Cache, CHS=178/255/63, (U)DMA
hda: set_multmode: status=0x41 { DriveReady Error }
hda: set multmode: error=0x04 { DriveStatusError }
ide: failed opcode was: 0xef
hda: cache flushes supported
hdc: ATAPI 4X CD-ROM drive, 512kB Cache, (U)DMA
Uniform CD-ROM driver Revision: 3.20
Begin: Mounting root file system...
/init: /init: 151: Syntax error: Oxforce=panic
Kernel panic - not syncing: Attempted to kill init!
```

Cybersécurité

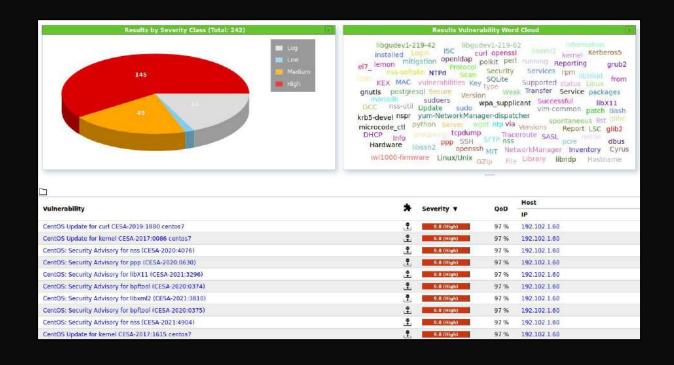
- Détection et exploitation des failles de sécurité (sur la machine de supervision)
 - Mise en place
 - Scan sans identifiants ssh
 - Scan avec identifiants ssh
 - Pentest manuel avec la version du kernel

Cybersécurité - Mise en place


```
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP link/ether 08:00:27:37:fc:bd brd ff:ff:ff:ff:ff:ff
inet 192.102.1.60/24 brd 192.102.1.255 scope global enp0s3
    valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fe37:fcbd/64 scope link
    valid_lft forever preferred_lft forever
```

Cybersécurité - Scan w/o credentials



Cybersécurité - Scan w/o credentials

Cybersécurité - Scan w/ credentials

Cybersécurité - Pentest

Linux ATLAS-CSUP.centos.7_2 3.10.0-327.e17.x86_64 #1 SMP Thu Nov 19 22:10:57 UTC 2015 x86_64 x86_64 x86_64 GNU/Linux

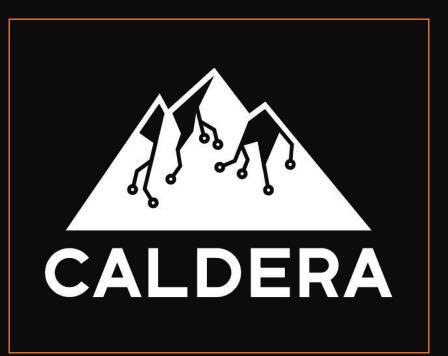
```
—(kali⊕kali)-[~]
-$ searchsploit centos 3.10
Exploit Title
                        %.x / 4.14.x (RedHat / Debian / ContOS) (x64) - 'Mutagen Astronomy' Local Privilege Escalation
Linux Kernel 2.6.x /
                           / RHEL 7.1) - 'aiptek' Nullpointer Dereference
Linux Kernel
Linux Kernel
                           / RHEL 7.1) - 'cdc acm' Nullpointer Dereference
                           / RHEL 7.1) - 'cypress_m8' Nullpointer Dereference
Linux Kernel
Linux Kernel
                           / RHEL 7.1) - 'digi_acceleport' Nullpointer Dereference
Linux Kernel
                           / RHEL 7.1) - 'mct_u232' Nullpointer Dereference
Linux Kernel
                           / RHEL 7.1) - 'Wacom' Multiple Nullpointer Dereferences
                           / RHEL 7.1) - visor 'treo_attach' Nullpointer Dereference
Linux Kernel
Linux Kernel
                           / RHEL 7.1) - visor clie_5_attach Nullpointer Dereference
                           7) - Denial of Service
Linux Kernel
Linux Kernel
                .0-229.x (Centos / RHEL 7.1) - 'iowarrior' Driver Crash (PoC)
                                🏂 / RHEL 7.1) - 'snd-usb-audio' Crash (PoC)
Linux Kernel
                %.0-514.21.2.el7.x86_64 / 3.3%.0-514.26.1.el7.x86_64 (ContOS 7) - SUID Position Independent Executable 'PIE' Local Privilege Escalation
Linux Kernel
```

Cybersécurité

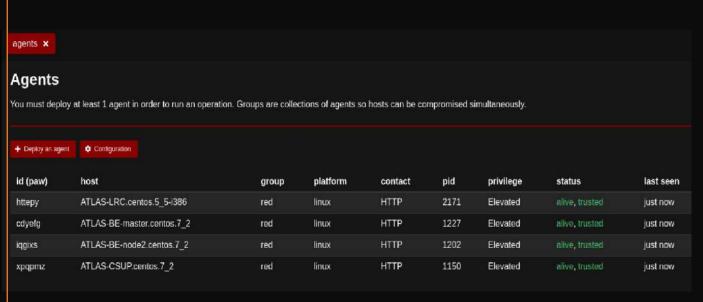
Exploit 'Mutagen Astronomy'

```
[test_exploit@ATLAS-CSUP exploit]$ gcc exploit_45516.c -o exploit_45516
[test_exploit@ATLAS-CSUP exploit]$ gcc poc-suidbin.c -o poc-suidbin
[test_exploit@ATLAS-CSUP exploit]$ ./exploit_45516
died in main: 233
[test_exploit@ATLAS-CSUP exploit]$ whoami
test_exploit
[test_exploit@ATLAS-CSUP exploit]$
```

```
[test_exploit@ATLAS-CSUP exploit]$ gcc -fpic -shared -nostartfiles -0s -s -o rootshell rootshell.c
[test_exploit@ATLAS-CSUP exploit]$ xxd -i rootshell > rootshell.h
[test_exploit@ATLAS-CSUP exploit]$ gcc 42887.c -o exploit_42887
[test_exploit@ATLAS-CSUP exploit]$ ./exploit_42887
Usage: ./exploit_42887 binary
died in main: 204
```

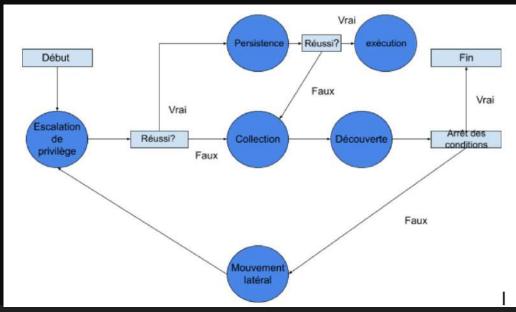

Exploit 'PIE'

Exploit Denial of Service


```
____(kali⊚ kali)-[~]
$ sudo ./exploit_dos.out -T3 -h 192.102.1.60 -p [514,514]
```

Caldera Red Team

- Déployer des agents
- Détecter les agents en service depuis la LRC
- Créer un planner
- Créer une habilité
- Lancer des opérations complexes

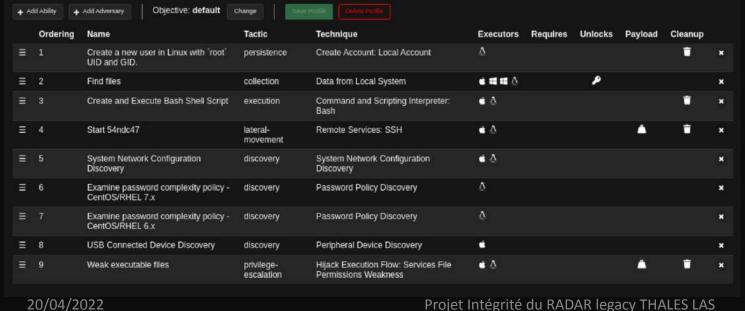


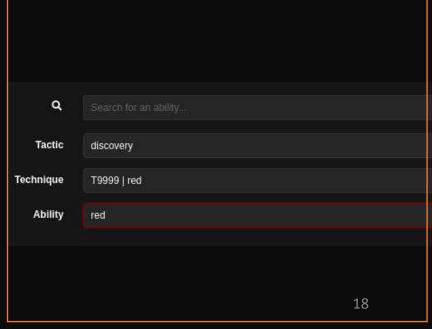
Déployer des agents

Affiche l'ensemble des agents connectés s'ils sont prêt à recevoir des opérations

Création du planner

- En python & Bash
- Une FSM (final state machine)
- Ajout de persistance


```
async def persistence(self):
    self.log.info('starting to get persistence')
    await self.planning_svc.exhaust_bucket(self, 'persistence', self.operation)
    successful = await self.has_been_modified()
    if not successful:
        self.next_bucket = await self.planning_svc.default_next_bucket('collection', self.state_machine)
    elif successful:
        self.next_bucket = await self.planning_svc.default_next_bucket('execution', self.state_machine)
```


```
async def collection(self):
    self.log.info('starting to get collection')
    await self.planning svc.exhaust bucket(self, 'collection', self.operation)
    self.next bucket = 'discovery'
async def execution(self):
    self.log.into('trying to make some execution')
    await self.planning svc.exhaust bucket(self, 'execution', self.operation)
    self.next bucket = await self.planning svc.default next bucket('collection', self.state machine)
async def discovery(self):
    self.log.info('starting discovery state')
    await self.planning svc.exhaust bucket(self, 'discovery', self.operation)
    lateral_movement_unlocked = bool(len(await self.planning_svc.get_links(self.operation, buckets=['la
    if lateral movement unlocked:
        self.next bucket='lateral movement'
    else:
        self.next bucket= None
async def lateral movement(self):
    self.log.info('starting to make lateral movement')
    await self.planning_svc.exhaust_bucket(self, 'lateral-movement', self.operation)
    self/Mext bucket= 'privilege escalatgiothtégrité du RADAR legacy THALES LAS
                                                                                                17
```

Création d'une habilité

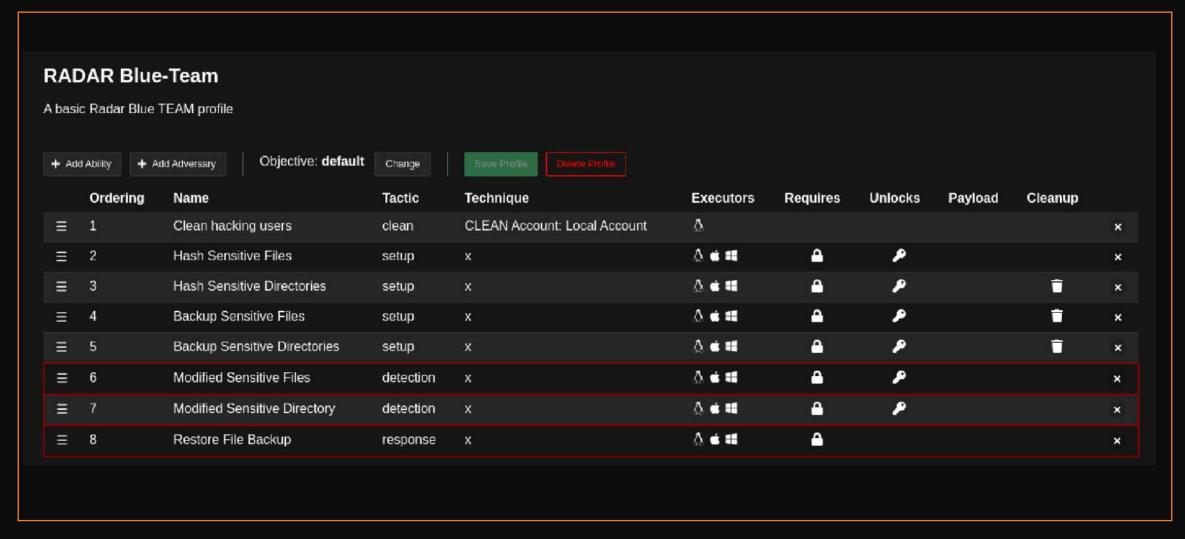
- En python & Bash
- Il s'agit d'un fichier yml
- Il contient les commandes personnalisées

Lancer une opération

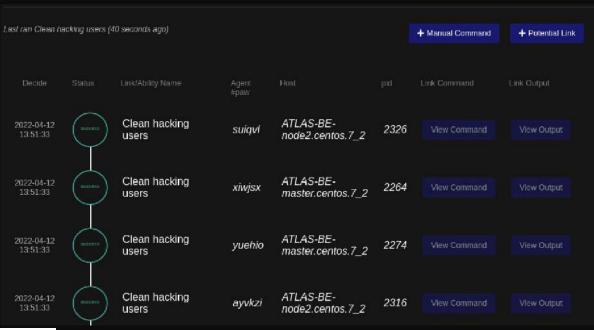
- Exécute pas à pas les états du planner
- Les états viennent récupérer 1 à 1 les habilités
- Affiche les résultats
- Possibilité de l'exécuter grâce à curl

Caldera Blue Team

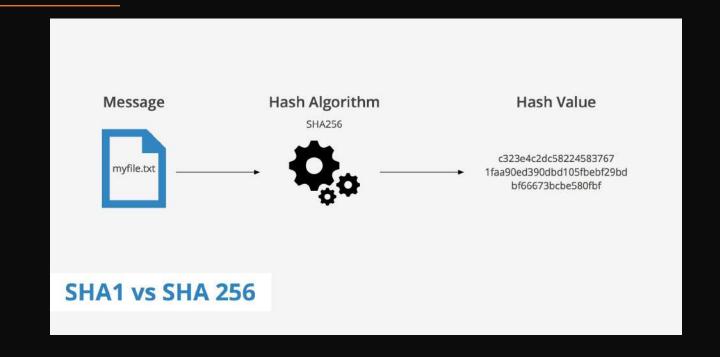
- Blue team
- Abilities Caldera Blue team
- Lancement de l'opération



Blue Team


- Préparation
- Identification
- Endiguement
- Eradication
- Récupération
- Leçons apprises

Abilities Blue team


Lancement de l'opération


```
2022-04-12 11:53:50 - INFO
                            (blue.py:18 init ) blue planner INIT !
2022-04-12 11:53:50 - INFO
                            (blue.py:25 execute) blue planner EXECUTE !
2022-04-12 11:53:50 - INFO
                            (blue.py:44 reset) blue planner RESET
                            (blue.py:53 register) blue planner REGISTER
2022-04-12 11:54:40 - INFO
                            (blue.py:61 detect) blue planner DETECT [1]
2022-04-12 11:55:50 - INFO
                            (blue.py:71 detect) blue planner DETECT no has been modified!
2022-04-12 11:56:45 - INFO
2022-04-12 11:56:45 - INFO
                            (blue.pv:61 detect) blue planner DETECT [2] !
2022-04-12 11:57:40 - INFO
                            (blue.py:71 detect) blue planner DETECT no has been modified!
2022-04-12 11:57:40 - INFO
                            (blue.py:61 detect) blue planner DETECT [3] !
2022-04-12 11:58:25 - INFO
                            (blue.py:71 detect) blue planner DETECT no has been modified!
                            (blue.py:61 detect) blue planner DETECT [4] !
2022-04-12 11:58:25 - INFO
                            (blue.py:71 detect) blue planner DETECT no has been modified!
2022-04-12 11:59:31 - INFO
2022-04-12 11:59:31 - INFO
                            (blue.py:61 detect) blue planner DETECT [5] !
2022-04-12 12:00:51 - INFO
                            (blue.py:31 has been modified) has been modified detected on /etc/passwd
2022-04-12 12:00:51 - INFO
                            (blue.py:67 detect) blue planner DETECT has been modified!
2022-04-12 12:00:51 - INFO
                            (blue.py:78 recovery) blue planner RECOVERY
                            (blue.py:61 detect) blue planner DETECT [1]
2022-04-12 12:00:51 - INFO
```

HASH Python

- Utilisation de hashlib
- Sha-256
- Permet l'intégrité de l'ensemble des fichiers
- Basé sur les premiers anti-virus
- En python

Surveillance du radar par l'Intelligence Artificielle

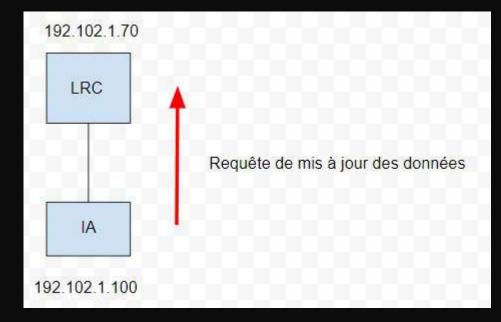
Création des sondes et envoi des données

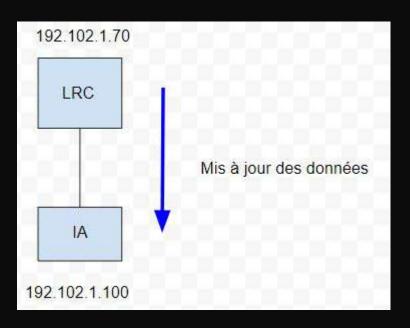
- Choix des données à envoyer
- Acquisition des données
- Affranchissement de mot de passe afin d'automatiser l'envoi
- Installation sur la machine RIF_LRC

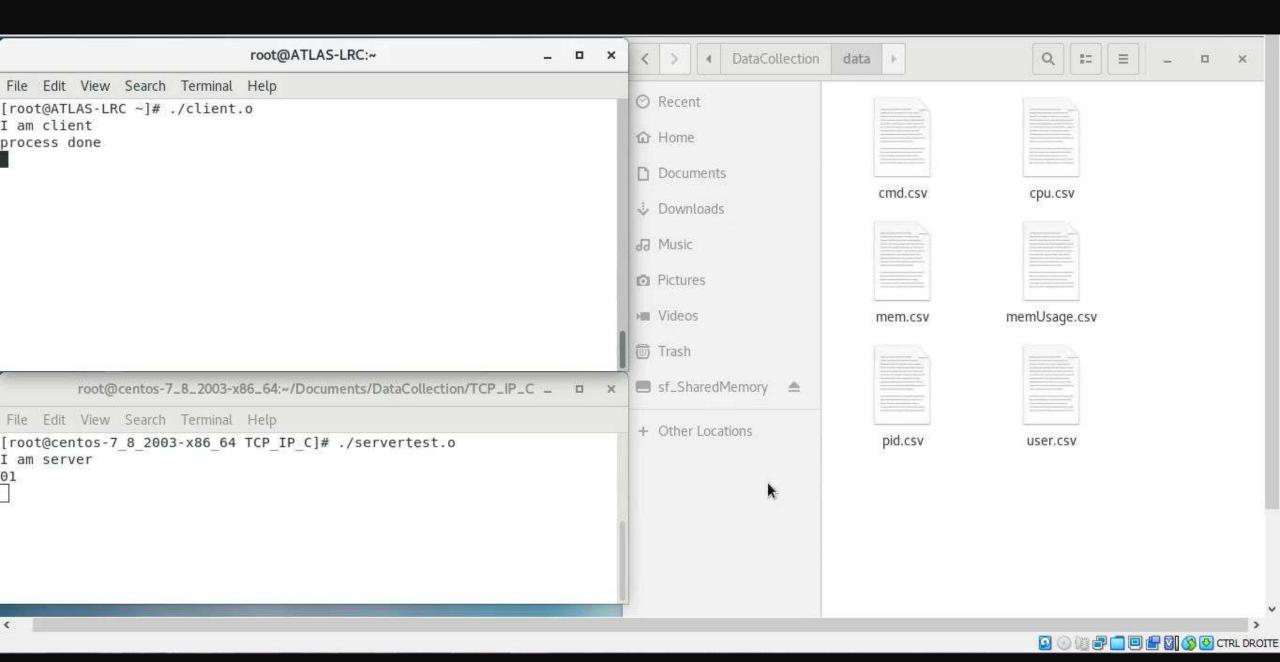
```
#!/bin/bash
ADDR=$1

ssh-keygen -t rsa -b 4096
ssh $ADDR

cat .ssh/id_rsa.pub | ssh $ADDR 'cat >> .ssh/authorized_keys'
ssh $ADDR
```

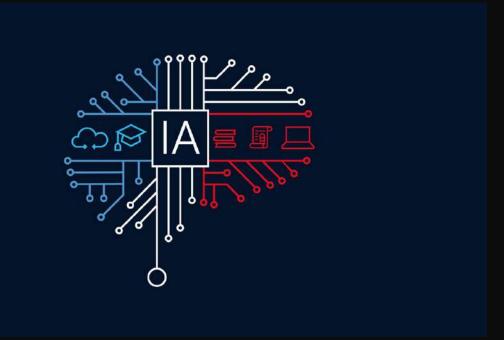

```
#Gather process datas via ps command and store them into a csv file
rm *.csv

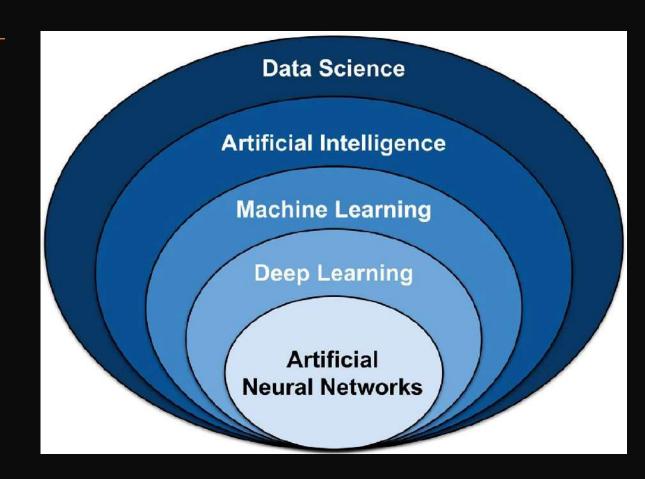

ps ax o user --sort pid | tee user.csv
ps ax o %cpu --sort pid | tee cpu.csv
ps ax o %mem --sort pid | tee mem.csv
ps ax o pid --sort pid | tee pid.csv
ps ax o cmd --sort pid | tee cmd.csv
```


```
#send the previous data to the AI server
scp -p *.csv root@192.102.1.100:/root/Documents/DataCollection
```

Routine de communication

- Création d'une communication entre un serveur (IA) et un client (radar)
- Rassemblement des données sur le serveur
- Routine de requête et réponse entre les machines



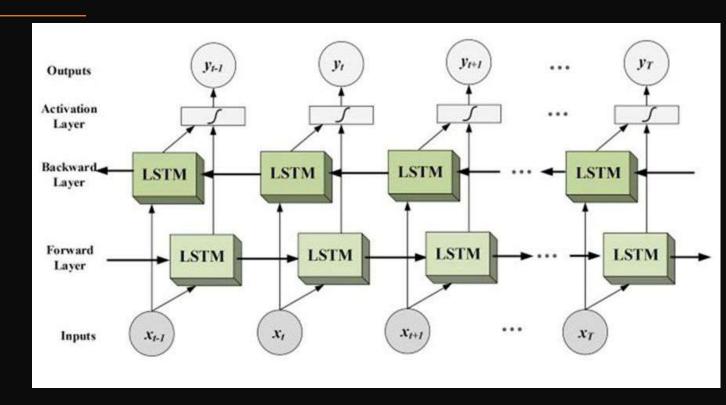

• Why AI?

- Identify Attacks patterns
- More accurate than people
- Faster
- Frees cyber engineers to focus on other complex tasks

· Create models

- Normalize the data and delete unnecessary rows or columns.
- Split our dataset to Training and testing sets
- Reshape our data to be ready for the training
- Create the model
- Train the model
- Test the model

Used Models


- Bi-LSTM (Deep Learning)
- Random Forest Classifier (Machine learning)

· Attacks to be detected:

- DDOs Attack
- Mirai Attack
- Scan Attack
- Spoofing

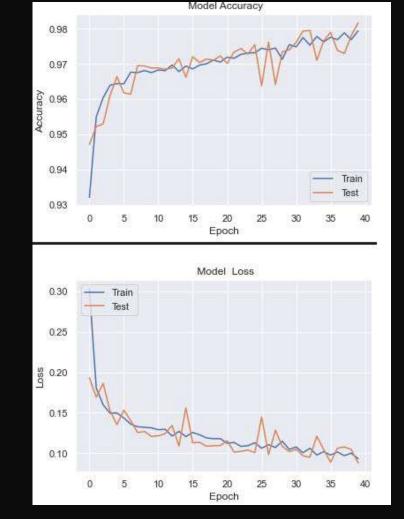
· Bi-LSTM

 Bidirectional long-short term memory(bi-lstm)

bidirectional_1(lstm_1): Bidirectional(LSTM)	input:	multiple
	output:	multiple

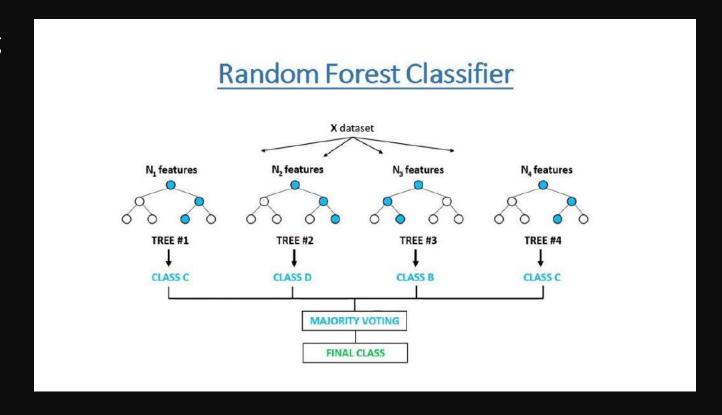
dense_1: Dense	input:	multiple
	output:	multiple

dense 2: Dense	input:	multiple
delise_2. Delise	output:	multiple

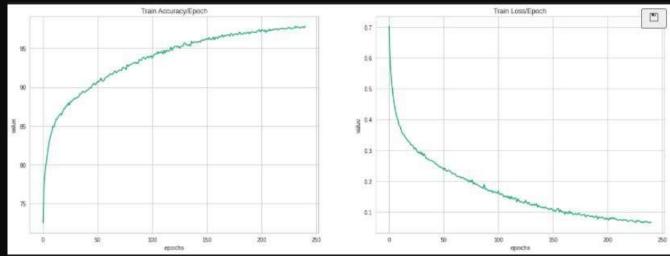


. BI-LSTM:

 Bi-LSTM Was used to detect the DDOs attacks on our system with accuracy of 98.18%


```
scores = model.evaluate(X_test, Y_test, verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

2.3s
accuracy: 98.18%
```



Random Forest Classifier

 Random forest is a supervised learning algorithm that builds "forests", it's an ensemble of decision trees, usually trained with the "bagging" method.

Random Forest Classifier

 Random Forest Classifier was used to detect Mirai, Scan and Spoofing attacks.

l f1-score su	pport
9 0.9932	220
5 0.9626	1266
0 0.9544	143
6 0.9264	228
5 0.7078	126
0.9455	1983
5 0.9089	1983
5 0.9450	1983

Merci de votre écoute Avez-vous des questions ?